

How To Order BEST A/V Humidification System

SELECTING HUMIDIFIER

Following chart can help you to select the best suitable type of BEST A/V humidifier.

Energy Source	Boiler	SPS			
	Electricity		SEDI	ULDI	ULSW
Make-Up Water	DI/RO	SPS	SEDI	ULDI	
	City Water	SPS +	SEDI +		ULSW
		Solenoid Valve	Solenoid Valve		
Capacity	2.68~134 kg/hr/unit	SPS	SEDI	ULDI	ULSW
	135~268 kg/hr/unit	SPS		ULDI	ULSW
	269~560 kg/hr/unit	SPS			
Cost	Economical	SPS	SEDI		
Budget	Control Priority			ULDI	ULSW

Note:

I Above listed humidification load is for each unit of humidifier.

I Model ULDI & ULSW can combine up to 4 units together and with a max. of 1072 kg/hr load.

I Model SEDI's max. load is 134 kg/hr only.

No limit on Model SPS's humidification load..

SELECTING DISPERSION PANEL

Following chart can help you to select the best suitable type of BEST A/V dispersion panel.

Installing Method	Vertically	Final-Absorb (VT)	Quick-Absorb
	Horizontally	Final-Absorb (HT)	
Cost	Economical		Quick-Absorb
Budget	Control Priority	Final-Absorb (VT), (HT)	Quick-Absorb

<u>Note:</u> when AHU or DUCT height is larger than width, then installing vertically; and when the width is bigger than height, apply horizontal installation.

SELECTING THE RIGHT MODEL & CALCULATING

Below is an example given to help you in selecting the right type and capacity for Humidifier and Dispersion Panel to best match your specific need.

Conditions:

- Energy Source: electricity
- I Make-Up Water: DI
- I Application: AHU (air handler unit)
- I 100% make-up air unit
- I Heating/cooling coil bank: 2 sq m (wide) x 2 sq m (high) = 4 sq m
- I Dispersion Panel Installation Method: vertically installing
- I Non-wetting distance (between air blower and Quick-Absorb unit): 1 M
- Air volume: 8 CMS (cubic meter per second)
- I Entering air condition (entering RH): 5^oC / 50%RH
- Desired air condition (leaving RH): 14^oC / 90%RH
- I Budget: control priority

Calculating the required humidification load:

I Check on Table Quick-1 and get following

	eneen on rabie daten raha ge	cionetting
I I		= 0.342 kg/s per 100 m ³ /s A
I I	Leaving RH = 14 ⁰ C / 90%RH	= 1.091 kg/s per 100 m ³ /s B
I I	Then the rising moisture =B – A	= 1.091 – 0.342 = 0.749 kg/sC
I I	Humidification load	= Air volume x C \div 100m ³ /s x 3600 s/hr
		= 8 m ³ /s x 0.749 ÷ 100 x 3600
		= 216 kg/hr + 5~10% capacity loss
		= 227~238 kg/hr

Selecting Humidifier & Dispersion Panel:

Based on above information and check with previous sections and charts of this chapter. You may find the Model ULDI-200-8 humidifier is the best one; and can equip with either Quick-Absorb or Final-Absorb (VT) dispersion panel. Quick-Absorb is recommended for easy installing and cost saving.

How to determining the Rise RH:

The rise RH is the condition of air entering into Quick-Absorb. Check on Table Quick-1 and then

- Locate entering temperature 5^oC and read horizontally to the right at 50%RH to get moisture figure 0.342 for entering air
- Locate leaving temperature 14^oC and read horizontally to the right to get an equivalent moisture figure 0.364 to above 0.342 (entering air moisture).
- Revealed from the Table Quick-1, the %RH for 0.364 is 30%RH. So, the Rise RH is 30%.

Determining the tube spacing:

- I Check on Table Quick-2
- Locate 30% (Rise %RH derived from last step) on the entering % RH section
- I And move vertically upward to 90%RH (the leaving RH)
- I Move horizontally to the right till reaching line A
- And then move vertically upward till reaching the level of non-wetting distance of 1M (1M=100cms)
- I Read horizontally to the left, and see 150mm. Use 150mm as the dispersion tube spacing.

Double-Checking:

In order to make sure that selected 150mm tube spacing is providing sufficient capacity as needed. You need to make a recheck as followings:

- I The dispersion panel face dimension (not including header) shall approximately close to the upstream heating/cooling coil bank dimension, so the dispersion panel face area is about 4 sq m.
- I Check on the Table Quick-3 and get a max. of 88 kg/hr-m² for tube spacing of 150mm.
- That would produce (4 sq m x 88 kg/hr-m² =) 352 kg/hr humidification load, which would provide adequate capacity as needed of $227 \sim 238$ kg/hr load.
- I If above outcome figure is inadequate, then select the 110 mm tube spacing to suit the specific humidification load needed.